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Green function solution of quantum decay (the Fano and 
Lifshitz cases) 

M Wagner and J Vazquez-Mirquez 
Institut fur Theoretische Physik, Universitat Stuttgart, Pfaffenwaldring 57, 7000 Stuttgart 
80, Federal Republic of Germany 

Received 7 March 1988 

Abstract. A Green function procedure is presented by means of which exact decay integrals 
can be derived without recourse to the eigenvalue problem. General solutions are given 
for Fano and Lifshitz type decay setups. Specific versions of these models are discussed. 
In  particular the Bixon-Jortner model and generalisations thereof, and the excitonic transfer 
problem, are discussed in more detail. Novel decay features are found, such as multiple 
decay channels, some of which are of non-golden-rule character, and a ‘crossover’ 
phenomenon from complete to incomplete decay, which is accompanied by alterations in 
the damping features. 

1. Introduction 

In recent years many involved theoretical techniques, such as Green function and 
density matrix methods, projector and path integral techniques and others have been 
introduced or used to describe quantum decay processes. As basic and standard 
references we cite the papers of Kubo (1957), Nakajima (1958), Zubarev (1960), 
Zwanzig (1964), Argyres and Kelley (1964), Mori (1965) and Caldeira and Leggett 
(1983). In all of these procedures approximative or semiphenomenological assumptions 
have to be introduced at some stage, or even at several stages, which cannot be easily 
judged in their effect on the result. Very often the question seems justified, whether 
these assumptions do not produce artefacts in the results. It is for this reason why 
there is a need for exact decay laws. 

The most widely used decay description is by means of Fermi’s golden rule, which 
is the oldest and most elementary decay law in quantum physics. In many of the 
above-mentioned methods the final-stage calculation in fact amounts to the application 
of this rule. But since its derivation is based on lowest-order perturbation theory, its 
validity has often been disputed. It has been verified only in special exactly solvable 
model problems, such as that of Bixon and Jortner (1968,1969). 

There is one aspect in the quantum decay problem which, in the great majority of 
papers, has been carelessly handled or even forgotten. It is the fundamental fact that 
the very definition of the initial state already fully engenders the decay law. This is a 
consequence of the possibility to project any initial situation onto the exact eigenvectors 
of the Hamiltonian H which governs the full intrinsic dynamics. In the golden-rule 
case an eigenstate of some ‘undisturbed’ Hamiltonian Ho is taken as the initial state, 
which per se introduces some arbitrariness and provokes further problems, if one wants 
to consider the decay of a symmetry-broken state. Another way of defining the initial 
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state is by way of the Kubo formalism (Kubo 1957), which in many instances physically 
would seem to be a ‘natural’ definition. A somewhat more questionable initial-state 
characterisation is by way of a factorisation of the initial density matrix, or by way of 
the neglect of ‘irrelevant’ parts of the density matrix. Whatever the initial condition, 
the decay follows from the knowledge of the exact eigenvectors, and therefore it is 
these which one desires to know in the first place. But this amounts to the full solution 
of the eigenvalue problem, which one tries to avoid. 

In the present work we present a Green function procedure which allows for the 
calculation of quantum decay without requiring the solution of the eigenvalue problem. 
This procedure is of special utility for Fano and Lifshitz type decay arrangements. 
The general solution of these are given in the form of decay integrals. Specific versions 
of the Fano and Lifshitz problems are studied in more analytical detail. For power-law 
coupling forms the phenomenon of ‘crossover’ from complete to incomplete decay is 
described, which gives rise to qualitative changes in the damping behaviour. The 
Bixon-Jortner solution is rederived and the solution of a generalised Bixon-Jortner 
model is also given. As a specific version of Lifshitz decay the solution of excitonic 
diffusion in a crystal is presented. 

2. Green function preliminaries 

Let us consider some Hamiltonian H with its orthonormal set of eigenvectors { Ip) } :  

The most general solution of the time-dependent Schrodinger equation is then 

IW)) = C (pIW0)) exp( --iEPt)l~).  
II 

We now introduce an operator Green function 

G“,”)( t - t’) = Ti@( ( t  - t ’ ) )  2 Ip)(pI exp[ -i(E, F i E ) (  t - t’)] (3) 
CI 

where ‘r’ and ‘a’ (upper and lower sign) respectively indicate the ‘retarded’ and 
‘advanced’ alternatives and where E = 0,. The solution (2) may then be written in the 
form 

lq( t ) )  = i[ G‘”( t )  - G‘”’( t)]l’P(O)>. (4) 

By definition (3) the equation of motion is found to be 

(i  $ - ( H  F iE ) G(r9a)( t - t’)  = S (  t - t’). 1 
We now introduce the Fourier conjugates 

+m 

G(r,a)(t - = dw G(r.8) (0) exp[ - iw(t-  t ’ ) ]  

G(r+)(u) = J-, - G(‘.a)(t- t ‘ )  exp[iu(t-  t ’ ) ] .  

J-, 
+O0 dt  

2T 

Inserting (3) in ( 6 b )  we find 

(5) 
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where 

G"'(w) = G(w + i s )  G'"'(w) = G ( w  -is). (8) 

The Fourier-transformed equation follows as 

(9) 
1 

27r 
[EI - H]G(E) =- I 

where I is the unity operator. Inserting (7 )  and ( 6 a )  in (4) we have 
+m 

1 9 ( t ) ) = i  dw exp(- iwt)[G(w+is)-  G(w -is)]19(0)) ( l o a )  

and the basic correlation function is 
t c c  

(9(0)19(t))=i(9(0)1 dw exp(- iwt)[G(o+is)-G(w - i ~ ) ] I 9 ( 0 ) ) .  ( 1 l a )  

From (7) we observe that the poles of G(E)  are given by E =E,, i.e. they are all 
located on the real axis in complex E space. Continuing w to the complex plane also, 
the poles in w space are given by 

w, = E, T i s  E = O + .  (12) 

Hence in complex w space the poles of G(w + i s )  will all lie below the real axis, 
whereas those of G ( w - i ~ )  will be above this axis. Taking this into account, the 
integrals ( loa) and ( l l a )  may be handled by means of the residue theorem. For 
simplicity we assume all poles (eigenvalues) to be of first order. (There would be no 
difficulty to include higher-order poles as well.) Equations ( l o a )  and (1 l a )  may then 
be rewritten as 

19( t ) )= i  dz exp( - iz t )G(z+is) l9(0))  

= i f  dz exp( -izt)G(z-is)lzIr(O)) 

for t > 0 (Im w < 0) 

for t < 0 (Im w > 0) ( lob)  

4 
and 

( 9 ( 0 )  1 9( t ) )  = i(9(O)l dz exp( - izt)G( z + i&)19(0)) for t>O(Imw<O) 

(1 lb)  
for t < O  (Im w > O ) .  

4 
f ( 9 ( 0 ) 1 9 ( t ) )  = i(9(0)1 

Applying the residue theorem, this yields 

dz exp( --izt)G(z--is)l9(0)) 

I9( t ) )=2.rrxexp(- iE, t )  lim (E  -E,)G(E)lV(O)) ( 1 O C )  , €-Ep 

and 

( 9 ( O ) I 9 ( t ) ) = 2 7 r x e x p (  -iE,t) lim (E - E,)(9(O)IG(E)lV(O)). , E + € ,  

(1lc)  

It turns out that all three different forms of (10) and (11) prove their utility in 
applications depending on the specific problems at stake. Their usefulness is based 
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on the fact that they comprise a method which avoids the solution of the full eigenvalue 
problem. In the summation forms (1Oc) and (1 1 c) it proves necessary to find only the 
eigenvalues E, and not the eigenfunctions. The integral forms (loa,  b) and (1 1 a, b) 
in general are even more advantageous, since the functional behaviour of G ( E )  
frequently may be found by suitable approximation methods. Moreover, in this form 
the effect of sequences of eigenvalues which are very close to each other (quasicon- 
tinuum or continuum) can be described by a single pole or a few poles which are 
located at some finite distance from the real axis. Examples will be given below. The 
procedures which respectively are introduced to solve the equation of motion (9) in 
general are developed after projecting this equation onto some suitable complete 
orthonormal base { I  j ) } :  

The coefficients ~ ~ ( p )  then also constitute a complete orthonormal set: 
( P  Ij) = T j ( p ) .  (13) 

C T j * ( p ) T j ( v )  8,” (13a) 
j 

and the projections of the Green function operators onto the base { l j ) }  are found as 

G$”’( t - t ‘ )=  Ti@(*(t--r’)) T]T(p)Tk(p) exp[-i(E,+iE)(t-t’)] (14a) , 

The projected equation of motion (9) becomes 
1 

(Eajk-qk)Gkl(E) =- 8j/ E = w i i a .  (15) 
k 277- 

It is this equation which, in our calculation of decay laws, will play the crucial role. 

3. Fano decay 

In the Fano problem (Fano 1961) a singular state 1s) is distinguished from the others 
Ik), such that only this state is coupled to the others, whereas states Ik) are not mutually 
coupled: 

H=Ei’’Is)(sl+ 1 E‘,O’lk)(kJ+ [vkls)(kl+ v f lk ) (s l ] .  (16) 
k ( # s l  k ( # s )  

In fact this problem is the most general version of the Bixon-Jortner model (Bixon 
and Jortner 1968, 1969). In the notation of the preceding section we have 

and the equation of motion (15) comes to be explicitly 
H,, = E io’ H s k  = vk H k k  = E p’ (17) 
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which can be solved completely. Inserting (18b) in (18a) and similarly (18d) in (18c) 
we find 

E = w f i e  (19a) 

which respectively may be inserted in (18b) and (18d) to yield ( E  = w * i ~ )  

(19d) 
In passing it is worth noting two equations which establish the antiresonance nature 
of the Fano problem. Since from results (19b) and (19c) we have 

V k G k s  = vz G s k  (20) 
we may insert (18c) in ( 1 8 ~ ) .  This yields 

which directly relates the singular Green function (GF) G , , ( E )  to the bath GF G k k , ( E ) .  
Since G s s ( E )  in general will have a finite value at E = E?', we conclude from (21) 
that the sum on the RHS must be zero for E + E:') (antiresonance). Similarly, again 
by use of (20), we may insert (18b) in (18c), which yields 

which gives direct evidence of the antiresonance behaviour of the bath GF on the LHS. 

Equations (19a-d), in view of relations (4) or (lo),  establish the general solution 
of the time-dependent Schrodinger equation. Hence, the decay of any arbitrary initial 
state may be written down in the form of a single decay integral. For illustration we 
have a look at the physically most interesting situation, which is the initial occupation 
of the singular state Is) 

I W O ) )  = 1s). (23) 
Then, by means of ( l o a )  

I*( t))  = ils) j-m dw exp( - iwt)[ G,, ( w  + ie)  - Gss( w - ie)]  
m 

a2 

+ C l k )  I dw e X p ( - i w t ) [ G k s ( W + i & ) - G k s ( W - i & ) ] .  (24) 
k --CO 

Employing the Plemelj formula (x+iE)- '= P ( l / x )  - i d ( x ) ,  we can write 
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I vk12 r I ( w )  = P E--- 
k W-EIp’ 

T ( w )  = T 1 I VkI2S(w - ELo’) 

by means of which we have, for example, 

k 

1 
2T 

G s s ( w  *is) = - [ ( U  k i a )  -Ep)- I I (w) i iT(w)] - ’  

and 

G,, ( w  +is) - GSs( w - i E )  = 2i Im G( w +is) 

where E = 0, has been preserved to also include the singular poles of this expression 
in regions where T ( w )  = 0. Inserting result (28) in (24) the basic correlation function 
turns out to be 

+m ( T ( w ) +  E )  exp( - io t )  
( Y r ( O ) l T (  t ) )  = I dw [ W - ( ~ I o ) + ~ ( o ) ) ] 2 + ( r ( W ) + E ) 2 ’  (29) 

If the bath eigenvalues E r )  constitute a quasicontinuous sequence in a spectral region 
R and if there are none outside (T(o )  = 0 if w & R ) ,  we may rewrite (29) in the form 

T ( w )  exp( - i w t )  

E exp( - i w t )  

( q ( 0 )  I * (  t ) )  = 
T I w e R  dw [ U  - E : ~ ) - I I ( ~ ) ] * + ( ~ ( ~ ) ) ~  

E = O + .  

The second term on the RHS acquires a finite value if the denominator of the integrand 
turns zero at some w, & R :  

w, - E?’ -r I (w, )  = 0 w, & R. (31) 

Expression (30) then takes on the form 

where we have used the formula 

From result (32) we note that the decay of a singular state Is) may be incomplete even 
if its position E:’’ is located within the region of bath states. The decay term is then 
supplemented by monochromatic additions which are characterised by the solutions 
of (31). In the trivial case vk = 0 (n(o) = 0, r ( w )  = 0)) equation (31) has the single 



Green function solution of quantum decay 43 53 

solution w ,  = E‘’’ and the monochromatic evolution is the only remaining term. On 
the other hand, if the coupling Vk is switched on and gradually increased, there may 
be a critical coupling strength, for which (31) starts to have a solution outside the 
region R of band states E“’. This ‘crossover’ is considered in § 4. 

In the small-coupling regime, and provided that there is a quasicontinuous E r ’  
sequence such that T(E?’) # 0, our result (32) merges into the golden-rule result 

(V(O)jV(t))=exp( -iE,t-T(E,)t)  (34) 

where 

E, = E p ’ + l I ( E p ’ )  

w,) = 7~ C I vki2w5 - ~ f “ )  = T I  V ~ ( E ~ ) I ~ P ( E , )  
k 

and where p ( w )  is the frequency density of the states Ik). 

(35) 

(36) 

4. Crossover behaviour in the Fano decay 

As explained following (29), the decay of a singular state Is) turns incomplete if (31) 
has a solution outside the region of bath states EL”. By changing the coupling constants 
Vk we may change the magnitude of the quantity I I ( w ) ,  and in doing so we may cross 
the borderline of creating a solution of (31) where previously there was none. This 
crossover on the one hand establishes a monochromatic contribution to the correlation 
function (V(0)I V ( t ) )  as already noted. But, in addition it also changes the qualitative 
character of the decay behaviour of the band part of (V(0) I V( t ) ) .  To make this more 
explicit, let us consider a power law coupling of the form 

r,&) = = an(w/n)m for 0 s w s R (37) 

= O  otherwise 

where m = 0,1 ,2 ,3 , .  . . . Then, from (26) 

x = (w/R) f fR Y m  I: d y G i  r I , ( w )  = Rp,(x) = -- p 
7T 

form = O  

for m = 1 

for m = 2 

where dimensionless quantities a and x = w/R have been introduced, and we will 
further use x, = E?’/R, O<x, < 1. Then, inserting (38) in (31), we have 

x - x, - p m  (x  ) = 0 x e  (0, 1). (39) 
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For x = xN > 1 ( w  = w N  = f ixN)  it turns out that there is always a singular solution. 
We show this by first assuming a to be such that xN = 1 + 6,0 < 6 << x, < 1. Then (39), 
by using (38), becomes 

a a 
7r rr 

1 + 6 = x, -- In 6 +- 6 + O( as2)  for m = 0 

C Y a  

r r r r  
= x, ---- In 6 +O(a6 In 6)  form = 1, etc 

or 

for m = 0 

=exp(  - ~ ( l - x , ) - l  + 0 ( 6 2 / a )  f o r m = l , e t c .  (41) a 1 
Hence, for a+O we have 6 + 0 ,  in agreement with the presupposition 6<< 1. For 
increasing a values 6 also increases, but we refrain from discussing its analytic form 
in the large coupling limit. 

Below the band region there is also always a solution x = xo < 0 in the case m = 0. 
To show this we first assume cy to be such that xo = - 7 , O <  7 << x, < 1. Then from (39) 
employing (38) for m = 0, we find 

or 

77 =exp(-7rx,/cy)+O(~2/cy) (43) 
which is seen to be consistent with the presupposition 7 << 1 for small a. For increasing 
a values the singular solution gradually moves away from the lower band edge 
(increasing 7 values), but we do not pursue this further. In the other power cases 
( m  > 0) there is only a solution below the lower band edge (xo < 0) if a exceeds a 
crossover coupling value a ,  which is given by 

a ,  = rrmx, for m > 0. (44) 

This can be seen once more if we presume xo = -7, 7 << 1. Then we find from (39), 
employing (38) for m > 0, that 7 + 0 for a = a,  + 0, , whereas there is no solution xo < 0 
for a < ac .  But we refrain from discussing this in detail. 

To sum up, the overall situation therefore is as follows. The total correlation 
function (32) consists of three constituents: 

(Yr(0) I Yr( f ) )  = (Yr(0) I9( c))~=,+ A. exp( - iRxof) + A N  exp( -ifix,t). 
(45) 

Two of these are of a purely oscillatory character with frequencies f io=f ixo  and 
fiN = fixN, respectively, which represent the singular solutions outside the continuous 
band. The amplitudes A. and AN are given by (see (32)) 
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If the coupling law is governed by the power m = 0, both singular solutions exist for 
any coupling value a. For m = 1,2,3, however, there is a crossover coupling strength 
a, ,  below which the lower singular solution Cl, < 0 does not exist. The amplitudes A. 
and A N  are drawn in figure 1 for m = 1. The decaying part (T(0)IT(t))dec of the 
correlation function is given by (see (32)) 

The time behaviour of this constituent is drawn in figure 2 for four different a values 
below the crossover value a,  and in figure 3 for two different a values above ac.  From 

ac 
U 

Figure 1. Amplitudes of the decaying and non-decaying parts in a Fano problem with a 
spectrally restricted bath (0 < E:?’< E(’) < Cl) and a power law coupling n - V 2 ( o ) p ( w )  = aw. 
a,  indicates the ‘crossover’ coupling (see text). 

Figure 2. Decay in a Fano system evolution below the ‘crossover’ coupling strength 
(a,= 0.628). Spectrally restricted bath and a power law coupling ~ r V ( w ) ~ p ( w )  = a w .  
a,=0.628. a1=0 .002(A) ,  a 2 = 0 . 2 ( B ) ,  a3=0.4(C),a,=0.61 (D). m = 1 , x S = 0 . 2 R .  



4356 M Wagner and J Vazquez-Marquez 

Figure 3. Decay in a Fano system. Evolution above the 'crossover' coupling strength ( a c ) .  
Only the decaying part is drawn. Spectrally restricted bath and a power law coupling 
~ V ( w ) ~ p ( w ) = c u w .  cu,=O.65 (A),  a , = l . O ( B ) .  m = l , x S = 0 . 2 R .  

figure 2 we note that the decay preserves some oscillatory character, which gradually 
fades away when cy approaches cyc.  For cy > cy, there is a sharp short-time decay of 
(P(0)  I P( t ) )  which is followed by an extended long-time tail. This tail again displays 
some oscillatory character, which is governed by the cutoff frequency Q. 

5. Bixon-Jortner model and modifications thereof 

In the Bixon-Jortner model (Bixon and Jortner 1968, 1969) it is assumed that the 
singular states of a Fano system are contrasted to a sequence of 'band' states with 
equal spacing which spread out over (-CO, CO): 

E r ' =  k h  k=0,*1,*2, .  , . ,+CO. (48) 
It is further assumed that all coupling constants are equal: 

v, = v. (49) 
Then the crucial summation of (19a-d) can be exactly performed via the method of 
residues (see, e.g., Korn and Korn 1968, p 202) 

1 V 2  v 2  t m  c = r-Cot(.rrE/A). - -- +03 lVA2 c -- A kZ-= k - ( E / A )  A ,=-a E - E r '  

The GF of (19a) is then given by 

(51) 
I 

25r 
Gss( E)  = - [E - E:'' - ( .iru2/A) cot( rE/A)]-' 

with its poles E,, given by the solution of the eigenvalue equation 

N (  E,) E,, - E:'' - ( T V * / A )  cot( rEv/A) = 0. 

N(E) = ( E  -E,)[1+(.irv/A)2(sin(.irE,/A))-2]+O((E - E,)'). 

( 5 2 )  

(53) 

Near each pole the denominator N ( E )  of G,,(E) may be expanded: 
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This, by employing (52), may be rewritten as 

N ( E )  = ( E  -E,)  ( E ,  - Ej”)’ + O ( ( E  - E,)’). 1 
The residues of G,,(E)  then become 

1 
21T 

-_ - v 2 [ ( E , - E ~ ) ) ’ + ~ 2 + ( n ~ 2 / A ) 2 ] - ’  

Inserting this in ( l l c )  we find for V(0) = Is) 

( q ( O ) / V ( t ) ) = 2 n ~ e x p ( - i E , t )  lim ( E - E , ) G , , ( E )  , € - E ,  

v’ exp( -iE,t) - - F [( E, - E p’)’ + v2  + ( TU’/ A)’] ‘ 

(54) 

(55) 

This is the result derived by Bixon and Jortner (1968,1969) via the solution of the 
eigenvalue problem, employing not only the eigenvalues E ,  but also the eigenfunctions. 
Since, by discussing (50) ,  each of the eigenvalues is seen to lie between two adjacent 
undisturbed values, E,,, > E,  > E k ,  (56) approximately constitutes a Lorentzian form, 
and for U >> A we may replace the sum by an integral, whence 

where 

~ B J ” V ’ + ( ~ V ~ / A ) ’ ] ’ ’ ’  for v >> A. 

We now want to exemplify the solution of the same problem by use of formulae 
(26)-(28). Replacing the summations in (26) and (27) by integrals we get 

d k = O  (59) 

and upon inserting in (29) 

exp( - i w t )  cc 

( ‘ Y ( 0 ) [ V ( r ) ) = g [  A -a dw ( W - E E ’ ) ) ’ + ( ~ T V ~ / A ) ’  

=exp[ - i E ~ ’ t - ( . i r u ’ / A ) I f I ]  for v >> A. (61) 

This coincides with the Bixon-Jortner result (57) within the presupposition made 
( U  >>A) in both cases to replace the summations by integrals. From both calculations 
given here we become aware of the practical suitability of the GF method. A rather 
general natural extension of the Bixon-Jortner model is given by 

I Vkl2= W(EIp’) E i o ’ = A k  k = 0 ,  *I,. . . ,*CO (62) 
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where the analytic continuation of W(Er ’ )  is denoted by W(E).  We assume W ( E )  
to have a sequence of poles at sites E = S,, r = 11,  12 ,  . . . , such that Im S, > 0 for r > 0 
and S-, = S:, To be more specific, we introduce 
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s-, = s: A-, = AT r = *l ,  12 ,  . . . (63) 
W ( E ) = Z =  Ar 

r 

which is still a rather flexible extension of the Bixon-Jortner model. The summation 
(50) then takes on the form 

2 -- I vk12 --- 1 2 W(Ak) 
k=--OSE-Er)  A h = - =  k - ( E I A ) ’  

This, by again employing the method of residues (see Korn and Korn 
can be summed up to yield 

A f ~- I “” - --I r dE’  cot( rE’/A) +?T W ( E )  cot( r E / A )  
k = - w  E - ELo) 2 ~ 1  c E - E  A 

r (c )  cot(rS,/A) 
lim ( E ’ - S , )  W(E’). +a F S,-E‘ E ’ + S ,  

(64) 

1968, p 202), 

(65) 

We choose the contour C as a circle at infinity. Then, by means of (63) the integrand 
turns to zero sufficiently fast, whence the contour integral dissapears. By inserting (63) 
we then find 

This expression constitutes the analogue of (50) and the further calculation completely 
parallels the one given by (50)-(61). The details of this calculation will be given 
elsewhere. At this point we only note the results for the most simple version of an 
extension of the Bixon-Jortner model, which is given by choosing r = *l, SI = ia, A I  = 
-iau2/2. Then the denominator of the GF (19a) is given by 

= [27rG,,( E ) ] - ’ .  (67) 
Since cot(rE/A) runs over all values in (-CO, +CO), if E moves from one E r ’  value 
(=Ak) to a neighbouring one, whereas all other quantities (67) almost remain 
unchanged in the same interval, there must be a solution of (67) in this interval. Hence 
the eigenvalues E, are again respectively located in between two adjacent undisturbed 
eigenvalues E io). The analogue of (56) is 

2E,(E, - E?’) 
(V(O)lV(r))= v21exp(-iE,t)  

P E i + a 2  
A + -  ( ri2)2 ~ E{:a2 [ l-;cotanh(y)] 

++ E 2  + a 2  [ E ,  - -- T - au2E, cotanh ( y) ]  ’ } - I .  
a A E i + a 2  
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Similarly, the analogues of (59)-(61) are found to be 

T U  1 
H(w)- i r (w)=-  v 2 -  

A w + i a  
for v >> A 

1 
[ w - E:’ - ( ra /A) U’( w + ia)-‘][ w - E:’ - ( .ira/A)v2( w - ia)-’] 

X 

u 2  +a? 

-_  dw exp( -iwt) 
- a 2  I_, 

U 2  

[ ( w  - E:’)( w + i a )  - ( v u /  A) U’][ ( w  - E?’)( w - i a )  - ( m / A )  v’] 
X 

for v >> A. (70) 

The two expressions (68) and (70) coincide again under the premise ( v / A ) > > l ,  if 
cotanh(m/A) = 1 is taken. We note that the integrand is no longer of a simple 
Lorentzian form. Rather, there is now a competition of two decay channels, which 
are given by the four poles of the integrand 

wllZ =;(Elo’ - ia )  *- 
and 

For ~ E j o ’ + i a ~ 2 > ~ ( 4 r r a v Z / A )  we find 

Tau2 1 +- 
A (Ey’+ia)2 

which merges into the BJ result for U + a. On the other hand, for \E“’+ iaI2<< ( 4 ~ a v ’ / A )  
the result is 

( 9 ( 0 )  I *( t ) )  = cos [ ($)1’2~]  exp( -$Ey’t-;at (73) 

which is the opposite extrema1 case. This result displays a rather remarkable feature. 
The coupling strength U, which conventionally dominates the decay constant, has now 
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lost this influence, but establishes a monochromatic modulation of the decay. The 
decay constant now is given by the spectral breadth a of the coupling function. 

6.  Lifshitz decay 

We use the term ‘Lifshitz decay’ in analogy to a notation in disturbed lattice dynamics 
(see, e.g., Maradudin et a1 1971) where a Lifshitz problem is one for which only a 
singular degree of freedom is involved in the disturbed Hamiltonian. Similarly, we 
characterise the quantum Lifshitz problem as one where the disturbance can be 
characterised by a single base vector Ir) in Hilbert space and we assume that Ir) is a 
number of the complete ON set { i j ) } ,  onto which the Hamiltonian is projected: 

H = x  HjE’lj)(kl+ Vlr)(rJ. 
ik 

The eigenvectors Ip“’) of H‘O’ are assumed to be known: 

(74) 

such that the zero-order Green function is known: 

(see (14b)). The equation of motion (15) may then be partially inverted (multiplication 
by 27rG“’ from the left) to become 

G,k ( E )  = G$)( E )  + 2 7rVGj:’( E )  Grk ( E )  (77) 

G,,(E) = G$’(E)[I-~TVGI:’(E)]-’ (78) 

G,,(E) = G$’(E)+~TVG~,O)(E)G$)(E)[~ -~TVG!:’(E)]-’ for j # r (79) 

G,,(E) = Gb:’(E)[l -~TVG;:’(E)]-’. (80) 

which has the solution 

and  specifically 

The preceding solution technique is intimately related to the one invented in the old 
sequence of Lifshitz papers (Lifshitz 1947, 1956). 

The Green functions being known, again by way of (10) and (1 l ) ,  all decay situations 
can be calculated. In particular we may consider the evolution of the initial state 

I W O ) )  = I r )  (81) 

for which, by means of ( l l a ) ,  (76) and (79), we get 

(q (O) Iq ( t ) )= i  dw e x p ( - i w t ) [ G , , ( w + i ~ ) - G ~ , ( w - i s ) ]  
ci, 

-m 

a3 

= i  dw exp( - iw t ){G: f ) (w+iE) [ l  -2~VG,,(w+i~)]-’-cc}.  (82) 
-m 



Green function solution of quantum decay 4361 

7. Excitonic dissipation 

To illustrate the Lifshitz type of decay problem we consider a chain { j }  of excitonic 
states { I j ) } ,  j =0,  * l ,  . . . , * N / 2 ,  with periodic boundary conditions, j +  N = j ,  and 
assume the chain to be disturbed at site j = 0: 

+ N / 2  

H = - $  c T 8 ( l j ) ( j + 8 I + H C ) +  VlO)(OI 
j = - N / 2  

where 8 ( = l ,  2 , .  . . , g )  denotes the g neighbour sites of j .  The undisturbed part of H 
is diagonalised by a Bloch ansatz: 

IP (O) ) -  - N-’12xexp(i$kj) l j )  .i k = 0 ,  i k l , .  . . , * N / 2  (84) 

and the undisturbed eigenvalues ELo’ are given by 

By (76) we then find 

Assuming now that initially the exciton at s i te j  = 0 is created, 9 ( 0 )  = IO), ( 8 2 )  becomes 

(9 (0 )19(  t ) )  = i I-, d o  exp( - iwt){G$:’(w +iE)[ 1 -2.irVG$t’(w + i ~ ) ] - ’  -cc} (87) 

for the evolution at t > 0. The sequence of eigenvalues ELo’ (see (85)) are densely 
spaced and cover a region R = {E!!”, It is crucial to take notice of this fact 
when calculating G $ t ) ( w + i ~ ) .  If w is located in the region R, we may apply the 
Plemelj formula ( x * i ~ ) - ’  = P ( l / x ) + i r 8 ( x )  by way of the dense distribution of E r )  
values ( N  >> 1). However, outside this region the Plemelj formula no longer applies 
since all ( w  - ELo’) values are finite, and therefore we have to keep E in its place. We 
therefore write 

cc 

Gb:’(w*ie)=A(w)+iB(w) for w E R (88a) 

= C ( w ) F i s D ( w )  f o r o @  R (88b)  

where 
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Inserting (89)-(92) in (87) we have 

dw exp( -iwt) 

B ( w )  = 2 j U E R  dw exp( - iwt) 
[ l  -27rVA(w)] ’+(2 . i rVB(o))*  

ED(@) 
[1-27rVC(w)]’+ (2“VD(W))’E’’ 

dw exp( - iwt) (93) 

Now for E + 0, the integral over the region ( w  $ R )  remains finite only if 1 - 277VC(w) = 
0 has a solution w, $ R :  

1 -27rVC(w,) = o  w,g R. (94) 

Then we may expand C ( w )  around w, and find 

1 - 2 r V C ( w )  

(95) 

and since (see (92) D = -dC/dw, the last integral of (93) transmutes into the form 

D ( 0 )  dw exp( - iwt) 
~ u E R  [ l  -27rvc(o)]’+&’(2~vD(w))2 

where 6(x) = E / T ( x ’ +  E ’ )  has been used. Upon inserting in (93) we finally have 

B ( w )  {Y(O)l*(t))=2 I;, dw exp( - i d )  [1-2~rVA(w)]’+ (27rVB(o))’ 

Hence, by way of the last term, the decay will be incomplete if a singular state E = w, 
shows u p  outside R. Expression (97) still constitutes an exact result, and explicit final 
computations can be administered if the functions A(@),  B ( w )  and C ( w )  are known. 
In this manner the decay problem has reached its most economic formulation. In this 
formulation the feasibility of approximations is particularly lucid. We show this by 
giving a simple example. From (85) we observe that E r ’  is an even distribution in 
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k(E‘_O:. = EL”). This implies that A(w) and C(w)  (see (89) and (90)) are odd and B ( w )  
and D(w)  (see (91) and (92)) are even functions of w. For w E R={-wO,  wo}  we 
therefore make the crudest possible approximation A(w) = w/27rwi, B(w) = (4w0)-’ 
and for w E R :  

d C  
dw 

D(w) = --= -(1/2 l r ) (w2-  w i ) - I  C ( w )  = -(1/4vwo) In 

This approximation is somewhat appropriate for wo >> V >  0. The solution of (95) is 
then w, = wo[l + 2  e x p ( - 1 / 2 ~ V ) ]  and the decay is given by 

- 

+ - [ 1 + exp( - ~ T v ) ]  exp( - 1 / 2 l r ~ )  exp( -iw,t). 
(2:o)2 

On the other hand, the decay setup given by the Hamiltonian (83) makes it very 
suggestive to have a look at the oldest microscopic decay law of physics which was 
found by Hamilton (1839) in the course of investigating the dynamics of a chain of 
coupled oscillators. This problem is a kind of classical analogue to the excitonic chain 
considered here. If we only allow for a nearest-neighbour transfer coupling in (85), 
6 = + 1 ,  T8= T, we find 

21r 
N 

The Fourier transform of the undisturbed GF (86) is then 

E?’= -T COS - k k=O,* l ,  . . . ,  i N / 2 .  (99) 

1 N / 2  
G g ) ( t ) = r - @ ( * t )  exp(-iEp’t) 

N k = - N / 2  

1 
dx exp(iTt cos x)  

21r 

where the summation of { k} has been transmuted into an integral ( N  large). Involving 
the definition of Bessel function J o ( z )  (see, e.g., Gradshteyn and Ryzhik 1965, p 953) 
we arrive at 

G%’(t) =ii@(*r)J , (Tt) .  (101) 

( W O )  I Wt)) = Jo( Tt). 

For V = 0 we therefore get from (82) 

(102) 

It is this result which corresponds to the one of Hamilton (1839), Havelock (1910) 
and Schrodinger (1914). As regards the disturbed problem ( V # 0) itself the Fourier 
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transform of (101) becomes effective: 

1 1 
for w 2  > T’ > 0, w S 0 (103) =*- 

257 ( w 2 -  T2)1/2 

(see Gradshteyn and Ryzhik 1965, p 731) from which, by (89) and (go), 

1 1 
A(w)  =i- 

257 (w2- T2)’/’ 

1 1 
B(w) =- 

~ ~ T ( T ” w ~ ) ’ ”  

for w 2 >  T2>  0, w SO 

f o r w 2 <  T2>0 

whereas A(w) = O  for w in (-T, T) and B ( w ) = O  for w outside (-T, T). Then (95) 
yields the singular solution 

w, = * ( T 2  + V’) ‘ I2 for V S O  (106) 

and 

( T2 + V’) ‘ I2  
for V S O .  

2 r r ~ 3  

Hence (see (97)), the decay law is of the form 
+T (T2-W2)1 /2  

(1Ir(O) 1 v’( t ) )  = j dw exp( -iwt) 
.TT -j- T ’ - w ’ + ( ~ T V ) ~  

exp[ i i( T2 + V 2 )  1’2t] 
V * 

( T’ + V’) for V S  0. 

8. Summary and further perspectives 

We have presented a Green function method by means of which quantum decay 
functions can be written in the form of decay integrals. They do  not require the full 
solution of the eigenvalue problem, provided the equation of motion for the Green 
function is solved. We have explicitly derived the decay formulae for Fano and Lifshitz 
decay arrangements. In particular the decay integral for the Fano case applies to any 
arbitrary coupling function and is of practical utility for an analytical discussion of 
specific coupling scenarios. 

We have done this analysis for the Bixon-Jortner model and generalisations thereof. 
We have regained the BJ result itself, as well as the explicit decay law for a modified 
BJ model, where the coupling strength V ( E )  is peaked at the same energy and has a 
spectral distribution characterised by a breadth. The novel feature of the latter decay 
problem is the fact that the decay function now displays two channels, one of which 
may be denoted as the ‘Bixon-Jortner’ channel, showing a golden-rule type of 
behaviour, and another one, where the coupling strength no longer denominates the 
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decay constant but establishes a monochromatic modulation of the decay constant, 
whereas the decay constant is given by the breadth of the coupling function. Depending 
on the intrinsic model parameters, either of the two channels may adopt the primary 
role. 

If the quasicontinuous region of the energy distribution is bounded, there may be 
non-decaying monochromatic contributions both in the Fano and Lifshitz scenarios 
(‘localised states’). The amplitude and the frequency of these contributions is also 
handled within our GF treatment without the need to calculate the localised eigenvectors. 
The specific novel feature in this model disposition is the existence of a critical coupling 
strength a, which marks the ‘crossover’ from complete to incomplete decay. This 
phenomenon is accompanied by modifications in the damping features of the decaying 
part. 

The presented method seems to have applicability in several physical problems, 
such as quantum diffusion and the analysis of non-radiative decay. This will be 
described elsewhere. 
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